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Fundamental aspects of the acoustic emission by vortex motions are considered by 
summarizing our recent work. Three typical cases are presented as illustrative 
examples: (i) head-on collision of two vortex rings, (ii) a vortex ring moving near a 
circular cylinder, and (iii) a vortex ring moving near a sharp edge of a semi-infinite 
plate. The theory of aerodynamic sound for low-Mach-number motion of an inviscid 
fluid predicts that the amplitude of the acoustic pressure in the far field is proportional 
to U4, U3 and U2.5 for (i)-(iii) respectively, where U is the translation velocity of a 
single vortex ring. Therefore the vortex-dge interaction generates the most powerful 
sound among the three cases at low Mach numbers. Our observations have confirmed 
these scaling laws. In  addition to the scaling properties, we show the wave profiles 
of the emission as well as the directionality pattern. The head-on collision radiates 
waves of quadrupole directionality, whereas waves of dipole property are originated 
by the vortex-cylinder interaction. The third, vortex-dge, interaction generates 
waves of a cardioid directionality pattern. The wave profiles of all three cases are 
related to the time derivatives of the volume flux (through the vortex ring) of an 
imaginary potential flow which is characteristic of each configuration, although the 
orders of the time derivatives are different for each case. The observed profiles are 
surprisingly well fitted to the curves predicted by the theory, except the final period 
of the first case, in which viscosity is assumed to play an important role. The observed 
wave profiles are shown in a perspective diagram. 

1. Introduction 
We consider here the acoustic emission by vortex motions in the presence or 

absence of a solid body at rest, based on the fundamental equations of motion at low 
Mach numbers. The physical idea is as follows. Suppose that there exists an unsteady 
fluid motion with localized vorticity w ,  which induces a nearly incompressible 
velocity field u.  Pressure fluctuations are originated at large distances or on the body 
surfaces by the unsteady flow. These drive acoustic waves, forming an extensive 
sound field. The problem of sound emission in general depends on four length 
parameters: the vortex size I, a dimension 1, of the region containing vorticity, the 
body size L and the wavelength h of the sound. Here the ratio 1/1, is assumed to be 
of order unity. If u is a representative velocity of the flow, then the timescale of the 
vortex motion is T = I/u. The length of the wave being generated will be 
h = CT = l / M ,  where M = u / c ,  and c is the sound speed. It is assumed that the Mach 
number M is much less than unity : 

U 

C 
M = - < l .  

This leads to separation of two regions owing to the relation h % 1. The rotational 
flow scaled on 1 can be visualized as an inner region, surrounded by an outer wavefield 
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FIGURE I .  Schematic diagram of the inner flow region and the outer wave region 

(Z/h = M + 1, 0 < a < 1). 

scaled on A (figure 1 ) .  This situation admits analyses based on the method of matched 
asymptotic expansions, which were developed independently by Crow (1970), 
Obermeier (1967), Muller & Obermeier (1967) and Lauvstad (1968), and subsequently 
studied by Mohring, Muller & Obermeier (1969), Crighton (1972), Obermeier (1976, 
1979, 1980) and Kambe & Minota (1981). I n  particular, Crow showed that the outer 
acoustic field is equivalent to  that generated by the distribution of quadrupole of 
strength po vi vj, which was first proposed by Lighthill (1952) in a rather broad sense, 
where po is the unperturbed uniform density. Further i t  was shown by Howe (1975 b )  
that  the source of the form div (w x v ) ,  proposed first by Powell (1964), can be related 
to Lighthill's source a2( po vi vi)/azi axi. 

Lighthill's pioneering work (1952) was based on an inhomogeneous wave equation 
with source terms, without recourse to  the method of matched asymptotic expan- 
sions. Most subsequent work followed this approach, e.g. Curle (1955), Ffowcs 
Williams (1969), Howe (1975b) etc. In  particular, starting from Lighthill's theory 
Mohring (1978) found an expression for the acoustic pressure solely in terms of the 
vorticity without involving the velocity. 

The present paper is concerned with three typical problems, namely the sound 
emissions by vortex motion (i) in the absence of a solid body, (ii) in the presence of 
a solid body of size L (x Z), and (iii) in the presence of an edged body of semi-infinite 
extent. As illustrative examples, we consider the motion of vortex rings and present 
observations from corresponding experiments. 

Within the framework of the method of matched asymptotic expansions (except 
for case (iii)), we present a reformulation of the theory of vortex sound, based on the 
ideas of Obermeier (1976, 1979, 1980), Mohring (1978), Kambe & Minota (1981), and 
apply it to the present problems concerned with vortex rings. In  their formulations, 
Mohring and Obermeier introduced a vector Green function. It is shown here that 
an equivalent formulation can be done without using a special notion of the vector 
Green function, i.e. such a vector function is naturally introduced in the problem as 
a vector potential of a certain velocity field. I n  particular, it  is found that temporal 
pressure profiles of the acoustic emission by vortices are related to the time 
derivatives of the volume flux (through the vortex loops) of an imaginary potential 
flow, which is characteristic of each configuration. This will be a new description of 
the acoustic pressure ; however the main body of this article is a review of our recent 
work. It is remarkable that the main features of the theoretical predictions are 
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reproduced in the laboratory experiments for the three cases that used vortex rings. 
The experiments are briefly described here; and the details may be found in the 
referenced papers. 

In $2 governing equations of the inner and outer region are presented. The method 
of matched asymptotic expansions is developed in $3  in the context of the present 
problem of vortex sound. Acoustic emission by vortices in free space is considered 
in $4, while $5  is concerned with the sound emission from the vortex-body 
interaction. The edge effect on the wavefield is considered in $6 for a semi-infinite 
plate. 

2. Flow field and wavefield 
We consider the flow of an inviscid fluid, which is governed by 

aP a -+-pp'ui = 0,  
at axi 

-pv.+-pv.v.  a a = -- aP 
at a axj a 9 axi' 

dp = c2 dp,  (2.3) 

where p is density, p pressure and c = (ap/ap)$ the sound speed (the entropy s is 
preserved in the inviscid fluid flow), and a summation convention is used. On 
eliminating the pvi terms in the above equations and replacing ptt by p, , /c2  (where 
p,, = a2p/at2, etc), we obtain the inhomogeneous wave equation for p :  

(Lighthill 1952). This is the basic equation for the acoustic emission in the present 
context. The fluid at rest is characterized by a uniform density p,, pressure p ,  and 
sound speed c .  On the assumption of a low Mach number ( l . l ) ,  the density p on the 
right-hand side of (2.4) is replaced by the uniform value pa,  neglecting the terms of 
order M2.  Thus we have 

In the inner region scaled on I ,  we define the following inner variables: 

using primed notation for the other inner variables. Equation (2.5) is rewritten as 

2 2  

This is equivalent to taking c = 03. It should be noted that the same equation without 
the O ( M 2 )  term can be derived as the governing equation for an incompressible fluid. 

For later use, let us consider a solenoidal velocity field v induced by a vorticity 
distribution o, which is given at  an initial instant in a bounded domain Do of linear 
dimension O(Z) and stays in a bounded domain D at subsequent times. The vorticity 
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o develops subsequently according to Euler's equation of motion. Introducing a 
vector potential A ,  the velocity u is expressed as 

u ( x , t )  = rotA, A ( x , t )  = 

This velocity field is solenoidal, i.e. div u = 0 (evidently rot tr = a). Using the vector 
y as a position vector in the domain D, an asymptotic expression for A ( x ,  t )  at large 
distances from D is obtained using the expansion 

where x = 1x1 is assumed much larger than y = (yJ. Outside D, the velocity is 
irrotational and is represented by the form u = grad@. The velocity potential @ 
associated with the vorticity distribution a(x, t )  is given by the series expansion at  

+ 0 ( ~ - 4 ) ,  
i a 1  a 2  i 

4n aXi x $3 a X i a x j  x 

large values of x: 
Cp = - p  (2.10) 

The term corresponding to the first term of (2.9) vanishes owing to the property 
soi d3y = 0. The vector pZ is the flow impulse and the tensor Q i j ,  having the property 
Qii = 0, is a second moment of the vorticity distribution, which will in $4 be related 
to the wave pressure generated by the vortex motion. In general they depend on the 
time t .  In the absence of external forces and bodies, the impulse pZ is conserved. It 
will be shown that the excitation of an acoustic wave by an incompressible rotational 
flow (2.8) is closely related to the time dependence of the coefficients of the multipole 
expansion (2.10). It is obvious from (2.10) that the magnitude of vi = d@/i3xi is O ( X - ~ )  
as x + c o .  

Next, consider the system with a larger lengthscale. Using the scaling length A,  
we obtain an estimate of magnitude 

which is of order unity: Hence the two terms on the left-hand side of (2.5) are 
comparable in magnitude. In general, the pressure p associated with a compressible 
motion (therefore pt,/c2 also) decays as x-l, whereas the velocity vt on the right-hand 
side decays like O ( X - ~ )  for the solenoidal component. The compressible velocity 
component (which is given by p / p o c  in the linear theory of sound) decays as 
uW+P E/x, where /3 > 0 will be shown later for the present cases. Introducing the 
outer variables defined by 

we find that (2.5) is approximated by 

(2.12) 
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Neglecting O(M4+”) terms relative to  those retained. This equation is the wave 
equation, suggesting that there exists a region of wave propagation a t  large distances 
(Crow 1970). 

3. Expressions of pressure 

The governing equations for the inner region are 

3.1. Inner $ow region 

a 1 
div v = 0, - v +  ( v * V )  v = -- V p ;  

at Po 
(3 . la ,  b )  

in dimensional terms. Introducing the notation L = ( v * V )  v ,  we have 

L = ( 0 - V )  v = o x v+grad+v2. (3.2) 

Taking the rotation of (3.1 b) yields the governing equation for o: 

a 
- o+v x (0 x v )  = 0.  
at (3.3) 

The pressure is determined by (2.7), which is rewritten as 

v z p  = -pa v -  L,  (3.4) 
since i3(vivj)/i3xj = Li by the solenoidal condition ( 3 . 1 ~ ~ ) .  This is a Poisson-type 
equation for p .  Introducing the Green function G(x ,  y )  satisfying V2G = - ~ ( x - Y ) ,  we 
readily obtain the integral representation 

(3.5) P A X ,  t )  = P-Po = Po JG(X.Y)  V-LtVt  t f  d3Y, 

where p ,  denotes the deviation of pressure in the inner region from the uniform value 
Po. 

I n  the presence of a solid body, boundary conditions are imposed on the body 
surface S :  

n - v = O  o n S ,  (3.6) 

n-V,G = 0 fory on S ,  (3.7) 

where n is a unit normal to  S ,  where V ,  is the grad operator with respect to the vector 
y .  I n  this case an additional term of the surface integral (with y denoting integration 
variable) J1, G(n*V,) P dS (3.8) 

is to be added on the right-hand side of (3.5) by the Green theorem. Performing partial 
integration to the volume integral of (3.5) and using (3.lb) and (3.2) which give 
n * ( p o L + V p )  = -p,a(n.v)/at = 0 (on S ) ,  one finds that the surface integrals drop 
out, and obtains the pressure represented only by the volume integral : 

(3.9) 

It is remarkable that this integral representation is valid whether a solid body is 
present or not. 

3.2 .  Outer wave region 

This region is described by the wave equation. A general representation of the solution 
is given in the form of a multipole expansion: namely, with an arbitrary function 
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a(F) and 2 = 121, a function of the form 2-la(F-2/c) is a solution of (2.12). Its  
derivative, obtained by differentiating arbitrary times with respect to the space 
coordinates 2,, is also a solution. Thus the pressure (po = p-p,)  of the acoustic wave 
in the outer region is represented in the form of multipole expansion: 

where f - 2  = ( t - x / c ) / ~  is the retarded time in the outer variables. The functions 
A,@), Ai(F), A i j ( f ) ,  . . . , having the dimension of pressure, are unknowns to be deter- 
mined by matching to the inner solution p,. In  other words, this pressure formula 
represents the emission of acoustic waves by vortex motion if the functions 
A,, Ai ,  A,, . . . are determined in terms of the vortex motion. 

3.3. Matching procedure 

The matching of the two expressions p , ( x , t )  and p o ( x , t )  is carried out in 
intermediate region, based on the method of matched asymptotic expansions. 
intermediate variable is defined by 

< . = M a  xi, ' [=Max' (0 < a  < 1) .  

an 
An 

In terms of g, the inner and outer variables x' and 2 are written as x' = M-"& 
2 = A!$-"<. Thus in the limit of M-tO with a fixed 6, we have X'L 00 and 2 ~ 0 .  

Since we are interested here in the leading terms, the matching principle is 

lim p'(x' = M-"C, t', M )  = lim @(x = A!$-"C, t' ,  M ) ,  
M+O M+O 

(3.11) 

with 5 fixed, where p' and @ are the leading-order expressions in each region. This 
permits determination of the functions A,, Ai, A,, . . . in terms of w ( x ,  t ) .  This is called 
'vortex sound'. 

4. Acoustic emission by vortices in free space 
4.1. General description 

We first consider the vortex sound in an unbounded fluid with no solid body. The 
Green function in free space is given by 

1 
G ( X , Y )  = 47tlx-yl. (4.1) 

This is substituted in the inner solution (3.9), in which the magnitude ofy is y = O(1). 
The matching procedure demands the expression at large distances x P y. Using the 
expansion (2.9) and applying the operator V, to G, one finds 

1 1  
4x x 

V,G(x,y) = -- W - + V , X ~ + O ( X - ~ ) ,  

1 
4nx5 where g = -  (X'Y) (XXY). (4.3) 

In  order to obtain the second term, we have used the relation 

1 a 2  1 
47tx5 47t 3 ax,axjx ( 3 x ( x * y )  -x") = - y - - = V, 0 2 ,  V , x g = -  

1 
(4.4) 

where 
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It is interesting to find that the vector g is a vector potential of the flow corresponding 
to the velocity potential @,(y), which represents a stagnation-point flow for a fixed 
x. When (4.2) is substituted into (3.9), it  is readily seen that the contribution from 
the first term disappears. Regarding the second term, partial integration transforms 
the integrand into the form -po(V x L ) - g .  From (3.2), we have V x L = V x (w x u ) ,  
which is equal to -aw/at,  from (3.3). Thus the inner pressure (3.9) is reduced to the 

expression d 
(4.5) PAX, t )  = Po JwlY, t ) - g ( x , y )  d3y+O(x-4), 

neglecting terms of O(M2)  since this is derived from (3.1). Owing to the identity 
w *  (x x y )  = x * ( y  x a), this is transformed to 

where the tensor QU is defined in (2.11) and the dot denotes differentiation with 
respect to the time t .  In  order to derive the last expression, we have used the relation 

since Qii = 0. Given the vorticity field w ( x , t ) ,  the tensor Qii(t) is expressed as a 
function of t ,  and then (4.6) represents the asymptotic form of p , (x ,  t )  as x - f  00. It 
is remarkable that the leading term is characterized by the quadrupole potentials 
(a2/i3xi ax,) x-l with the time-dependent coefficients &t) (Obermeier 1976). It is 
interesting to find that the pressure (4.6) is obtained from (2.11) using the relation 
p = --po a@/at (for the linear irrotational perturbation) since the fluid impulses Pi are 
conserved in the free-space problem (Kambe & Minolta 1981). 

In  terms of t h e  inner variables 
. a 2  1 + O ( M 2 ) .  (4.7) 

a~ ax; ax; X I  
p’ = Q!. - - 

The matching principle suggests that 

= M3&ii (Aii = M3 $ Qii(t) in the dimensional form 

the other coefficients being the higher orders. (There is an ambiguity in the matching 
to determine the monopole term, which is resolved by a higher-order matching, Crow 
1970; Obermeier 1976.) Thus we find from (3.10) and M = Z/h that the external 
solution is given by 

a 2  &(t - x / ~ )  
Po@, t )  = Po (4.9) 

to leading order. This is the pressure formula of the vortex sound. Equation (4.9) 
shows that the fluctuation of Qii(t) propagates to the outer space as a quadrupole 
wave. 

In  the far field as 9+ co, only the space derivative applied to the retarded time 
becomes dominant, and the pressure takes the simpler form 

(4.10) 

(Mohring 1978). The tensor coefficient Qii is to be evaluated at the retarded time 
t - x/c. 
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In order to estimate the scaling law, we use the length 1 and the velocity u as 
reference. Then the time t and the tensor Qij are normalized by l/u and 14u. Thus we 

(4.11) 
find the scaling law 

In the linear theory of sound, the particle velocity corresponding to p ,  is given by 
vF = p F / p o  c .  Hence, 

1 
c2 x X 

pp) ~ ~ ~ u 4 ~ p o u 2 ~ - - .  

1 up) - U W  -. 
X 

The sound intensity I is given by p$/po  c .  This leads to the well-known intensity law 
(Lighthill 1952) : 

12 

X2 
I - po u3M5 - K u8. 

4.2. Acoustic emission by loop vortices 
The pressure formula (4.5) permits the following interpretation. Suppose that there 
exist n (unlinked) vortex tubes and all the vortex lines are included in them. The 
centreline of each vortex tube is denoted by a closed curve ck (k = 1,  . . . , n) : namely 
we consider a system of n vortex rings. 

On the assumption that the vortex tube is very thin and the vorticity is uniformly 
distributed over its cross-section, the strength r k  of the kth vortex is given by lo(k)l  crk 
where crk is the cross-section area. Writing a line element of Ck as ds(k), we have 
od3y(k) = 101 V k d s ( k )  = rkds(k). Then the integral in (4.5) is 

f n r f 

(4.12) 

by the Stokes theorem, where S,  is an open surface with its circumference bounded 
by the curve C,. As noted in the previous section, V x g  represents the velocity of 
a stagnation-point flow of velocity potential G2. Thus i t  is found from (4.5) that the 
pressure p ,  is given by the time derivative of the sum of the volume flux of the flow 
G2 through the vortex loop C, multiplied by po rk. 

Using (4.4), we have an alternative expression 

(4.13) 

where the summation with respect to i , j  = 1,2 ,3  is understood (following the 
summation convention), and the surface integral 

r 
(4.14) 

depends on t .  It can be shown that this is equivalent to (4.6) by noting that 

The same argument as in the previous section leads to the far-field expression 

where ei = xi/x, and 
a 

s k  j " j  
J ( k , e )  = 2eiej[Jij(k)-&?ijJmm(k)] = -s n -@*dS, 
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with Qp* = &!-- ez ei y i  y j .  Thus the far-field pressure is related to the third time 
derivative of the volume flux J ( k , e )  through C, of the potential flow Qp,, which is 
a stagnation-point flow from the direction e (= x / x )  to the origin. 

4.3. Head-on collision of two vortex rings 

Axisymmetric collision of two circular vortex rings presents a particularly simple 
example of the acoustic emission. This configuration can be realized in the laboratory 
(see $4.4). 

Suppose that we have two vortex rings having a common symmetry axis x3 ,  with 
the one vortex being a mirror image of the other with respect to the plane x3 = 0 (thus 
the strengths are opposite), and that they approach each other according to the 
equation of motion. The distance of the vortex centre from the symmetry plane is 
denoted by Z .  The vortex ring is characterized here by its strength r, ring radius 
R and the radius 6, of its thin vortex core. The translation velocity U in a single state 
( R  = R, and 6, = 6,) is assumed to be given by Kelvin’s formula 

u = - r (log$-J 8R 1 
4nR, 

The axisymmetric configuration of two vortex rings (the vortex strength on the 
positive side being -r with r > 0) yields 

Q i j  = 0 (i +j), 

Q 11 = Q  2 2  -- - 2Q33 = -&Q(t)! 

that is, the tensor QU is represented in terms of one scalar function 
Q ( t )  = - 2 r R 2 ( t ) Z ( t ) .  The interacting motion of two vortex rings is described by a 
system of differential equations (Kambe & Minota 1983), originally derived by Dyson 
(1893). It is interesting to find that the quantity -R2Z is the value of the Stokes 
stream function at the vortex core (2, R )  of an axisymmetric stagnation-point flow 
toward the plane x3 = 0 (from both sides). Therefore Q represents the volume flux 
through the two vortex rings, multiplied by r. 

Introducing these into (4.10) one obtains 

(4.16) 

The factor Q( t )  represents the wave profile, whereas the factor (cos2 19-$) gives the 
quadrupolar distribution, where the angle 8 denotes c0s-l ( x 3 / x )  for the observation 
point x. 

4.4. Laboratory experiment 

Apparatus to make a vortex ring, using a shock tube, has been described fully: 
Kambe & Minota 1983; Kambe, Minota & Ikushima 1985. When a shock wave 
emerges a straight nozzle, a vortex ring is formed on exit by the shock impulse. 
Two straight nozzles are set to face each other with a common axis in a cubic 
anechoic chamber. The two vortices, formed simultaneously at each nozzle exit, 
approach each other with their self-induced motion, and they collide at a central 
position (figure 2 ) .  When the vortices approach the mid-plane of collision, their radii 
increase rapidly and the vortex cores come into contact. At the same time their 
forward motion is blocked, and then the two vortices are broken down. 

The acoustic waves generated by the vortex collision were detected by four 
microphones placed in the far field (Minota & Kambe 1986). In  view of the 
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FIGURE 2.  Head-on collision of two vortex rings (definition sketch). 
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FIQURE 3. Example of four pressure signals (curves 1 4 )  detected at 0 = 170" and x = 630 mm, and 
the average and r.m.s. error of ten such signals at each time point ( U  = 34 m/s, R, = 4.7 mm). 

axisymmetric configuration, the microphone position is placed at an angle 8 to the 
nozzle axis. The detected signals are processed by digital methods. The test procedure 
and the extraction method for the wave profile imbedded in the original noisy signal 
are as described in Kambe et al. (1985). The extracted signals are averaged over ten 
data sets. Curves (14) in figure 3 are examples of the wave profiles before the 
averaging, and at the bottom the averaged profile (over ten such curves) is shown 
together with its r.m.s. error at each time point. 

Figure 4 shows a perspective diagram of the average-pressure profile 
p,(t) +p,(t) (1  - 3 cos2 0) (see below) observed in the experiment. The radial co- 
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270" 
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FIQURE 4. Perspective diagram of the observed acoustic pressure (maximum amplitude being about 
0.15 Pa):  U = 33 m/s, R, = 4.7 mm, z = 630 mm. Equal times are shown by concentric circles, the 
outer one being earlier in time. 

180' 

FIQURE 5.  Directivity of the acoustic pressure shown in figure 4 at the time corresponding to 
the first (arrowed) peak of the profile of figure 6. 

ordinate is the fime, with the outer concentric circle being earlier in time. The height 
denotes the acoustic pressure. The initial velocity U and radius R, were 33 m/s and 
4.7 mm respectively, and the wave was observed at x = 630 mm. 

An instantaneous directivity of the radiation is shown in figure 5 ,  in which the 
radial length from the origin represents the magnitude of pressure on a linear scale. 
The filled and open circles respectively denote negative and positive values of the 
observed pressure. The solid curve shows the sum of two main components: a 
quadrupole p,(l-3cos20) and a monopole p ,  (independent of O ) ,  where the 
coefficients pq and p ,  were determined from a truncated Fourier decomposition of 
the profile a t  the given time. (The series truncation is necessary since the signals were 
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FIGURE 6. Comparison between three pressure profiles of the quadrupole coefficient p,(t) : 
observation (-), an inviscid vortex model (--.--.--. ) and a viscous vortex model (- - -). 
U = 57 m/s, R, = 5.4 mm, z = 500 mm. 

obtained at every 10' angular position.) The four-lobe curve shows the quadrupole 
nature of the emission. 

Figure 6 shows a comparison between three pressure profiles of p,(t) of the 
quadrupolar component p q ( t )  (1 - 3  cos2 8 ) :  observation (solid, E), an inviscid vortex 
motion (chain dotted, I) and a model taking account of the viscosity (broken, V).  
The inviscid theory considered above gives the curve I. It is inferred from this figure 
that the viscous effect becomes important in the final period. (Recently K.  Shariff 
1986, private communication, has shown by numerical analysis that the pressure dip, 
which cannot be obtained (in the curve I) by Dyson's equation of vortex motion for 
very thin circular cores, can be predicted by an inviscid theory taking account of the 
finite size of the cores and their deformation at the collision.) The curve E is obtained 
from Fourier decomposition of the detected signals, which also includes a significant 
isotropic component (Kambe & Minota 1983; Minota & Kambe 1986). The genera- 
tion of an isotropic monopolar component by a viscosity effect is discussed in Kambe 
(1984) and Obermeier (1985). 

5. Acoustic emission from vortex-body interaction 
5.1. General description 

When there is a solid body in the vicinity of the vortex motion, the wavefield is 
characterized by a dipole radiation rather than the quadrupole in the previous 
free-space problem. The boundary condition to be satisfied on the body surface causes 
the more powerful emission of waves of a dipole nature. The fluctuating pressure over 
the body surface results in a fluctuating net force acting on the body. Conversely the 
fluctuating force, multiplied by a minus sign, is equivalent to the rate of change of 
the resultant momentum of the fluid system. 
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The Green function in the presence of a solid body of size O(1) near the origin is 
represented approximately by 

where Y(Y) = Y + @dv).  (5.2) 

This is valid when x is far from the body, i.e. 1x1 + 1 (Howe 1975a, Obermeier 1980). 
The vector function Y*(x) denotes the velocity potential (V2Yi = 0) of a hypothetical 
flow around the body with a unit velocity to the yi direction at infinity (i = 1,2 ,3) .  
The first term yi represents the uniform flow of a unit velocity and the vector function 
@#(y) represents a correction due to the presence of a body, which imposes the 
boundary condition of vanishing normal velocity. When there is no solid body, one 
may put cD# = 0. Then (5.1) reduces to (4.1). 

The function G,(x, y) satisfies the boundary condition on the body surface 8, that 
is n.V,G, = 0 for y on S. 

This is verified by differentiating (5.1) with respect to yi 

(5.3) 

and using the property n . V q  = 0 for y on S ,  since V Y ,  denotes the velocity of a 
potential flow around the body. It is readily seen that the singularity of the function 
GB tends to the correct behaviour as xjl, y j l  -f CO, since we have I@(y)I = O ( Y - ~ )  
for a compact body of size O(Z) and therefore G, tends to 1/[47cI~-yI]. The Green 
function G must satisfy the equation V2G = 0 when restricted to the case 1x1 + Iy1. 
Using 1x1 + lyl in (5.1), we develop it in a form similar to (2.9), but using yi in place 
of yi and apply the operator V t .  Then, the first two terms disappear (since Vz& = 0), 
and the third term gives 

Therefore the function GB satisfies the equation V2G = 0 within an error of O(xP3). 
However the term of V, G, to be used in the following is a lower-order term of O ( X - ~ )  
((5.4) below); thus G, has the correct behaviour up to that order. This permits the 
use of (5.1) as the Green function in the present context. 

Using an asymptotic expansion of the form (2.9), (5.3) is written as 

X. v G = 2 vy q + 0 ( ~ - 3 ) .  
y 47cx3 (5.4) 

The velocity field of the potential flow represented by Vy Yi is incompressible. This 
permits introduction of a vector potential Yi (a vector for each i = 1 , 2 , 3 )  by the 
relation 

In  cases of two dimension or axisymmetry, the vector is related to the stream 
function. Since V x (V x lu,) = - V z q  = 0 (i.e. each component of Yi is harmonic), we 
may choose that Y, = 0 on S without violating (5.5). Using (5.4) and (5.5) in (3.9), 
one obtains 

V & = V x q ,  div'Y,=O ( i = 1 , 2 , 3 ) .  (5.5) 
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Integrating by parts and using (3.2) and (3.3) as in the previous case when we 
obtained (4.5), one finds 

p .  a 1  
P,(x, t )  = -2 17, - - + 0 ( ~ - 3 ) ,  

4a ax, (5.7) 

where 

Thus we have found that the inner pressure tends to the form of a dipole potential 
at large distances in contrast to the previous case of a quadrupole. 

I n  terms of the inner variables 
1 a 1  p'(x' ,  t )  = -- R' - - 

4a a ax; x's 

where & = ni/u212. The matching principle suggests that 

1 
= - M2 4~ 4 (A,  = -3 n,(t) in the dimensional form 

the other coefficients being of higher order in M .  Thus the acoustic pressure in the 
outer region is given by 

Po a W - X I C )  

p o = - G &  x 

In  the far field 2+ co, this reduces to 

(5.9) 

(5.10) 

In  order to obtain the scaling law, we note that l7, is normalized by UP.  Therefore 
using the order estimate of O(a/at) = u / l ,  we find the scaling law for the dipole 
emission, 

p u3 1 1 
p(d) - 0 - = po u2M - 

c x  X 
(5.11) 

The corresponding velocity is 1 
v$!) - uM2 - 

X 

5.2. Acoustic emission by u loop vortex 
As in 34.2, suppose that there exists a vortex tube forming a closed loop, of which 
the centreline is denoted by a closed curve C. Writing a line element of C as ds, (5 .8)  
is written as 

I7,(t) = I'fc q - d s  = I' (V x Y,)*ndX, (5.12) 

where S is an open surface with the circumference bounded by the curve C,  and V x q 
represents the velocity of a hypothetical potential flow around the body. Therefore, 
Hi is equal to the volume flux J ,  of the flow V x 'y, through the closed curve C,  
multiplied by r: I7,(t) = I 'J t ( t ) ,  

ss 

where J ,  = js (V x Y,)-ndS. (5.13) 

The volume flux J ,  depends on the vortex position. Although the potential flow 
V x Yi is steady, the flux J ,  is time dependent because the vortex position (the position 
of C) changes. 

Thus we have found the following law : when a vortex ring (not necessarily circular) 
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moves near a solid body, the flux Ji through the vortex loop C changes with time, 
which causes sound emission according to (5.10): 

(5.14) 

This phenomenon is similar to Faraday’s law in the theory of electromagnetism. 
However the present case of vortex sound is valid in an asymptotic sense in the limit 
M-tO. 5.3. Force on the body 
It is interesting to know that the coefficient function l7, is related to the resultant 
force F,(t) on the body. Curle (1955) showed, in the same situation as in $5.1, that 
the sound pressure in the far field is given by 

1 a F,(t-x/c) 
p0=47ci& x (5.15) 

According to the fundamental law of mechanics, a body acts on the fluid system with 
the force -Fi. Thus (5.15) shows that the force acting on the fluid generates an 
acoustic wave of dipole type. Equations (5.15) and (5.9) suggest the relation 

therefore 
(5.16) 

Thus it is found that the force on the body is related to the volume flux through the 
vortex loop. 

In order to obtain (5.9) we used the volume integrals (3.9) and (5.8) with the help 
of the Green function (5.1). On the other hand, the formula (5.15) was derived from 
a surface integral, with & being the surface integral of the stress over the solid body. 
Both integrals are combined in (5.16). 

By linear perturbation theory, the pressure p and the velocity potential @ are 
related by p = -po a@,lat. Far from the eddy region, the velocity decays like x - ~  and 
diminishes at large distances, where linear theory may be applied. Using the pressure 
(5.7), we find that the velocity potential @ for the inner flow takes the form of the 
dipole potential : 

1 a 1  
47c a x i x  = - n, - -+ 0 ( ~ - 3 ) .  

It is verified for axisymmetric cases (Miyazaki & Kambe 1986) that the axial force F 
on the solid body is related to the dipole coefficient A of the velocity potential, defined 
by A = -I13/4n (only the non-zero component) in the present notation, and 
connected by the equation F = 4npO dA/dt = -po dl7,ldt. This is consistent with 
(5.16). 

5.4. A vortex ring moving near a circular cylinder 

A laboratory experiment has been performed for a circular vortex ring moving near 
a circular cylinder of comparable cross-section (Kambe, Minota & Ikushima 1986; 
paper in preparation by T. Minota & T. Kambe). The vortex travels along a nearly 
straight line. In the absence of a solid body a vortex travelling with a constant 
velocity is silent. However the presence of a body leads to the generation of an 
acoustic wave of dipole nature, as is considered in $5.3. However observation 
shows that the dipole axis rotates in the present case, which is seen in the diagram on 
the left-hand side of figure 7. This is because the force vector acting on the cylinder 
changes direction as the vortex moves relatively to the cylinder. 
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FIQURE 7. Vortex position relative to the circular cylinder (right) and the corresponding pressure 
distribution in the far field (left) where the outer circle corresponds to 0.08 Pa: U = 27 m/s, 
R, = 4.7 mm. (a )  t = 1695 ps; ( b )  1905 ps; (c) 2100 1s.  

270" 
V 
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90" 

FIQURE 8. Perspective plot of the pressure using the same data as in figure 7 
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FIGURE 9. Schematic diagram, illustrating the theory with Y = const. denoting the streamlines. 

In  the polar diagram of figure 7 (left), the radial coordinate denotes the pressure 
observed in the far field (with a linear scale), the outer circle corresponding to 
0.08 Pa. The open and filled circles respectively denote positive and negative values 
of the observations. The translation velocity U and radius R, of the vortex ring are 
27 m/s and 4.7 mm respectively. The corresponding position of the vortex is shown 
on the right-hand diagram (shifted back by the retarded time) together with the time 
from an experimentally fixed origin. Figure 8 shows a perspective plot of the pressure. 
The spiral structure corresponds to the rotation of the dipole axis. Figure 9 shows 
a diagram in the plane ( z , , x 2 )  perpendicular to the cylinder axis x3, in which the 
cross-section of the cylinder is shown a t  the centre and streamlines of a hypothetical 
potential flow around it are depicted in addition to the schematic plot of a vortex ring 
and its straight-line path. I n  this case the vector potential Yi is given in the form 
(0, 0, Yt) (i = 1,2)  where Yi is the stream function of a two-dimensional flow around 
the cylinder with a unit velocity in the x6 direction at infinity. It is noted that the 
combination J i x i / x  in (5.14) denotes the volume flux of a potential flow to the 
observation direction. The flux Ji can be computed from (5.13). The pressure (5.14) 

(5.17) 
is proportional to 

f ( t )  = "" = J l ( t )  sin6-J2(t) cos6, 
J x  
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FIQURE 10. An example of an average wave profile (thick) and its r.m.s. error (thin), observed at 
0 = 70" and z = 626 mm for U = 28 m/s, R, = 4.7 mm, L = 13.2 mm and a, = 4.5 mm. 

t I I I t I I I t I 

1 .o 1.4 1.8 2.2 2.6 3.0 
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FIGURE 1 1 .  Comparison of the dipole coefficients a(t)  and b ( t )  : observation (solid) and theoretical 
profiles computed with 6,/R, = 0.15 (thick broken) and 0.1 (thin broken). 

where xl/x = sin 0, x2/x = - cos 0, with 0 denoting the angle measured from the 
negative x2 axis. 

Figure 10 shows an example of an average wave profile (thick) together with its 
r.m.s. error (thin) a t  each time point. The averaged pressure observed at every 10" 
angular position is decomposed into a Fourier series with respect to 0. It is found 
that the main component is given in the form 

p,,,(0, t )  = a( t )  cos 0+ b ( t )  sin 0, (5.18) 

in accordance with the expression (5.17), which is characteristic of the dipole 
emission. The solid curves in figure 11 illustrate experimentally determined profiles 
a(t) and b( t ) .  Theoretically computed profiles are shown by broken lines for two ratios 
of the vortex-core radius So to the ring radius R,: S,/R, = 0.15 (thick broken) and 
0.1 (thin broken). Agreement in absolute values between the observed and predicted 
profiles is excellent. This verifies that  the wave profile is determined by the second 
time derivative of the fluxes Jl( t )  and Jz( t ) .  
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6. Vortex-edge interaction 
6.1 .  Pressure formula 

When a body is not compact, the wavefields generated by the vortex motion are quite 
different from the previous two cases. We consider a semi-infinite plate with a sharp 
edge, near which a vortex ring passes (Kambe et al. 1985). 

This problem is solved by using the Green function G,(x ,  y ; t )  of the wave equation 

(: &-V) G, = S(x-y)  S ( t )  

under the boundary condition (3.7) with the surface S lying in 
[xl < 0, x2 = 0, - co < x3 < CO]. This Green function has been well studied in the 
theory of diffraction by a half-plane (Noble 1958 ; Macdonald 1915) and is reproduced 
in Ffowcs Williams & Hall (1970), Crighton & Leppington (1970) and Kambe et al. 
(1985). 

The acoustic pressure is given directly from the inhomogeneous wave equation 
(2 .5)  with (3 .2)  in the form 

p 0 ( x , t )  = -po  L @ , t ) ' V , , G , ( x , y ;  t-7)d3yd7. ( 6 . 2 )  jj 
This is similar in form to (3.9), but with G replaced by G, and additional time 
integration added. Although a closed-form solution of G, is known, it is convenient 
to use a series form, which leads to a mathematically simple formulation. The 
assumptions M < 1 and 1 < h in $ 1  permit the introduction of the low-frequency 
Green function (Howe 1975; Kambe et al. 1985), which is expressed by the first few 
terms of a series valid for small l /h.  

In  this way, an approximate Green function for the present problem is found to 
be 

where 

Substituting (6 .3)  into (6 .2) ,  performing partial integration and using (3 .3) ,  we obtain 

where q5 = c0s-l ( x 3 / x ) .  The t th  derivative is defined by 

depending on the past history, where (-i); = exp (-fin) and Q(w) is a Fourier 
coefficient of g( t ) .  Thus it is found that the acoustic pressure is composed of the 
angular factor 

(6 .6)  F(0, q5) = s i n 9  (sin$); 
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A 

FIGURE 12. Schematic diagram of vortex-dge interaction: W = 1.0 m;  d = 5 mm; D (inner 
diameter) = 6 mm; vortex radius % 4.7 mm. 

and the temporal factor 

fc t ,  = .($)$ J ( t )  1 
with J =  (Vx!P)*ndS. s 

By the same argument as for the normalization, the scaling law for the vortex-edge 
sound is found as 

p ut 1 1 
d x X 

v p  - u p 4  -_ 

(6.8) p g )  N 0 - = po u2M; -. 

1 The corresponding velocity is 

X 

6.2. A vortex ring passing near the edge 

In  a laboratory experiment (Kambe et al. 1985) that detected the emission from a 
vortex ring travelling near the edge of a half-plane along a nearly straight line, both 
the angular distribution and the temporal profile were found to agree with the 
predicted profiles F(0,  q5) andf(t) with reasonable accuracy. A schematic diagram of 
the experimental configuration is illustrated in figure 12. Figure 13 shows a polar plot 
of the pressure p ( 0 , t )  observed in the plane q5 = 90" a t  fixed x and t .  The radial 
coordinate is the pressure on a linear scale in Pa. The open and filled circles 
respectively denote negative and positive values. The observed pressure p ( 0 ,  t )  is 
decomposed into a truncated Fourier series, and it is found that the main component 
is given by p ,  = a*(t) sini0, 

in accordance with (6.5). The solid curve in figure 13 shows this component at the 
corresponding time. Note that a curve with the radial distance given by sin2+8 is 
the cardioid. 

Figure 14 is a perspective diagram of the pressure profile observed in the plane 
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FIGURE 13. Polar plot of the far-field pressure observed at fixed x and t.  The solid curve shows 
the component a*@) sin!$ at the same t.  

+ 180° 

- 180" 
--- 

- 90" 

FIGURE 14. Perspective profile of the wave a*(t) sinbe. Equal time is shown by the concentric 
circles. 

q3 = 90°, the radial coordinate being the time. The half-plane lies a t  B = k 180", on 
each side of which the pressure takes opposite signs. The vortex moved from the 
positive to negative yz axis with the translation speed U = 30.4 m/s and the radius 
R, = 4.7 mm. 

Examples of the average wave profiles (thick) over ten data sets observed at six 8 
positions are shown in figure 15 together with their r.m.5. error curves (thin). Figure 
16 shows a comparison between the (averaged) observed curve and the predicted 
profiles on absolute scales for the same vortex as in figure 14. The observation was 
made a t  x = 634 mm. The solid curve is the experimental profile a*(t)  and the broken 
curves are the computed ones p /F(B ,  q3 = 90") obtained by using (6.5) for the relative 
core sizes 6,/R, = 0.2 (thin broken) and 0.3 (thick broken). It is found that the theory 
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FIQURE 15. Examples of average wave profiles (thick) and their r.m.8. error curves (thin) at  six 
0 positions (9 = 90') for U = 30 m/s, x = 634 mm and L = 9.6 mm. 
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0 400 800 1200 1600 2000 

t ( P S )  

FIGURE 16. Comparison between observed (solid) and predicted (broken) profiles. The solid curve 
is a*(t). U = 30.4 m/s, R, = 4.7 mm, z = 634 mm, S,/R, = 0.2 (thin broken) and 0.3 (thick broken). 
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FIGURE 17. Observed laws of the acoustic pressure amplitude Ap versus the translation speed U (in 
an isolated state). The power laws shown in the diagram correspond to  the straight lines. 

can predict the main features of the observations. This verifies that  the wave profile is 
determined by the $th time derivative of the volume flux J through the vortex. 

7. Summary 
Fundamental aspects of sound emission by vortex motions are considered. Three 

typical cases of vortex sound are examined in detail : sound emissions by (i) vortices 
in free space, (ii) vortex-body interaction and (iii) the interaction of vortex with an 
edged body of semi-infinite extent. The main theoretical predictions including wave 
profiles and directionalities are reproduced in laboratory experiments. 

In  particular, we show in figure 17 the experimental power laws of the acoustic 
pressure amplitude Ap (see figures 3, 10,15) versus the translation speed Uof a singe 
vortex (far from a body). It is found that the curves for head-on collisions and 
edge-vortex interactions are well described by the power laws (4.11) and (6.8), and 
that the curve of vortex-cylinder interaction closely follows the predicted power law 
(5.11). Note that the peak values Ap shown here were obtained at fixed angles (not 
the average over the angles), and that in the case of the head-on collision the relative 
speed should be doubled. 

The present consideration is restricted to the motion of an inviscid fluid a t  low Mach 
numbers. Viscosity effects are discussed in Morfey (1976), Kambe (1984), Obermeier 
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(1985) and Minota & Kambe (1986). The sound generation by high-speed flows is 
outside the scope of the present paper. 

Our recent studies using simple fluid-dynamical systems presented here include 
both theoretical and experimental investigations. In  view of the aim of the Sym- 
posium, the usefulness of such a combined study to obtain concrete results should be 
especially emphasized. This work is cordially dedicated to the spirit of that great 
scientist G. I .  Taylor. The author is grateful to Miss T. Minota for her invaluable 
contributions to the experimental and computational aspects of the work. 
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